“The whole nine yards of Biologics QA using NMR: Acquiring spectra, easy Processing, and Analysis”
High-resolution nuclear magnetic resonance (NMR) is a key technology that provides critical information on protein conformation, aggregation, stability, and modifications such as glycosylation. Effectiveness and ease of use in the study of the Higher Order Structure (HOS) of biotherapeutic proteins make this technique a uniquely valuable tool. Recently, new developments in acquisition and data analysis have emerged to establish NMR as a powerful metric for validating the HOS Critical Quality Attribute of intact molecules utilizing both 1D and 2D NMR methods.
Fast 1D fingerprinting methods will give a quick answer if the biologic is similar to the reference material. To identify changes at the amino acid level, 2D NMR methods are required. An interlaboratory comparison coordinated by NIST (26 labs involved, different magnetic fields, worldwide) demonstrated both high precision and high reproducibility of the 2D methyl fingerprint NMR method, which was further developed to include selective excipient signal removal. Optimization of acquisition and processing techniques will be presented which yield sensitive, high resolution 2D methyl fingerprint spectra of biotherapeutics in a few hours for fields 600MHz and above. High fidelity 2D methyl fingerprint spectra can be evaluated by multivariate analysis techniques to validate the HOS of biosimilars to reference product.
Powerful, effective software tools and proven algorithms come together to provide a robust combination for all important aspects of the data processing and analysis using Mnova. The software will be demonstrated to show its utility with the established fingerprinting and statistical analysis methods.